

USAXS instrument – instrumentation capabilities examples of science

Jan Ilavsky

Advanced Photon Source, Argonne National Laboratory

A U.S. Department of Energy laboratory managed by The University of Chicago

But first... Why do we need extended range instruments?

USAXS/pinSAXS/USAXS-XPCS/WAXS

Current parameters

- Range of X-ray energies 7 to 18 keV & 24keV (HE ops)
- 4 decades of Q range: 0.0001 to 1.0 A⁻¹ (HE 0.00002 to 1.0 A⁻¹)
- Dynamic intensity range of over 9 decades
- Flexible beam size:
 - 0.02 1 mm vertical
 - 0.02 2 mm horizontal
 - 200 um² minimum reasonable size
- 1-D and 2-D collimation geometries
- Combined Bonse-Hart & pinhole SAXS ("pinSAXS") instrument
- WAXS optionally available (0.5 to 5.0 A⁻¹)
- USAXS-XPCS geometry
- Standard-less absolute intensity calibration
- Imaging structures at various Q values (*)
- User-friendly data reduction and evaluation software

1D-Collimated USAXS w/optional SAXS

2D-Collimated USAXS/USAXS-XPCS

1D Bonse-Hart design USAXS, pinSAXS, & Imaging

Measurements:

Intensity vs Q (slit smeared) combined USAXS & pinSAXS USAXS-Imaging (imaging materials at various *q* vectors)

Modeled HE-USAXS/WAXS capabilities

High q resolution Real World materials – mono sized distribution of spheres, powder

Need for pinSAXS: Nanostructured carbon - data

- Peter Pfeifer's group (U Missouri)

 studies of carbon materials for onboard gas storage for vehicles.
- Documents need for improved high q range

Need for pinSAXS: Powder sample with small-angle diffraction

CAN WE MEASURE REAL WAXS? FOLLOW PHASE TRANSFORMATIONS FOR IN-SITU EXPERIMENTS?

- Job: Add ability to measure 10 40 degrees angles with suitable area detector
- Conditions:
 - Do not impact USAXS and pinSAXS capability...
 - Make easy and transparent for users
- Solution: Use Pilatus 100k, 300k or similar detector (Pilatus 100k from APS equipment pool)
- Resolution tunable given by size of detector, it's pixel size, beam size, etc.
- Tested in December 2012, user operations in 2013. Major success with users.
- Planned upgrade by procurement of Pilatus 300k-w to APS DP.

Low-res (17keV) USAXS / pinSAXS / WAXS

High energy operations

- Increase USAXS operational energy
 - Penetration through environments (heaters, reactors)
 - Thicker (more relevant) sample thicknesses
 - Higher-Z materials (Pu, but also cements, Pt, Au, ...)
 - Reduce multiple scattering (cement, porous ceramics)
- Using current Si (220) crystals as Si (440)
 - Easy change over (just change angle)
 - No additional expenses
 - No immediate commitment
 - Limits energy range :
 - Si 220 = 8keV 18keV
 - Si 440 = 18keV ???
- Side effects:
 - GOOD : Increased Q range $(Q_{min} \sim 2x10^{-5} A^{-1})$
 - BAD : need for much better mechanical stability

Target: World-wide unique facility with capabilities matched by no one.

High-resolution / high-energy USAXS

Current technical details

- intensity and Q range:
 - Up to 11 decades of intensity range
 - 1e-4 A⁻¹ to 1 A⁻¹ Q range
 0.5 nm → >1 micron
- Scan time: 10 min/scan (shortest scans down to 3 minutes)
- Flexible beam size
 1 x 2 mm → 0.02 x 0.2 mm
- Energy range : 10 18 keV
- Q resolution ~ 0.0001 A⁻¹
- Geometries:
 - Slit smeared w/pinSAXS
 - 2D collimated
 - USAXS-XPCS for slow materials dynamics
 - USAXS-Imaging (imaging materials at various q vectors)

High energy

- intensity and Q range:
 - Up to 11 decades of intensity range
 - 2e-5 A⁻¹ to 2 A⁻¹ Q range
 0.3 nm → > 30 micron
- Scan times as fast as 2 min/scan
- Flexible beam size 1 x 2 mm → 0.02 x 0.2 mm
- Energy range : 10 30 keV
- Q resolution ~ 0.00002 A⁻¹
- Geometries:
 - Slit smeared w/pinSAXS
 - 2D collimated
 - USAXS-XPCS for slow materials dynamics
 - USAXS-Imaging (imaging materials at various q vectors)

Conclusions...

USAXS is uniquely useful, with lot of users and documented impact in many, many areas of science

"From Chocolate to Pu in one week"

- USAXS is shown to be industrially robust, reliable instrument with high uptime (close to 100%) and user friendliness...
- Done a lot of unique work
- Generated publications (222 on my list 1999 2011)
- Enabled many student thesis
- Is available through GUP system to the best proposals...

